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Numerical solution of the Smoluchowski equation for a vibrofluidized granular bed
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A stochastic approach, similar to that used to describe Brownian motion, was used to model the displace-
ment probability of grains in a three-dimensional vibrofluidized granular bed. As neither an analytical descrip-
tion nor measurements of the diffusion coefficients were available, the governing partial differential equation,
namely, the Smoluchowski equation, was solved numerically using an iterative procedure, modifying the
granular temperature profile at each step. The results of this stochastic model were compared to experimental
measurements of the displacement probability density made using positron emission particle tracking. The
results indicate that methods based on hard elastic systems such as the Smoluchowski equation are appropriate
to granular systems, particularly over timescales greater than the mean collision time.
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I. INTRODUCTION

Granular materials have been studied closely for ove
hundred years@1#. The ubiquity of such materials in bot
nature and industry has precipitated many studies with
aim of improving transport and storage methods. Recen
the complexity and richness in the behavior of dissipat
and nonequilibrium systems has led to renewed interes
granular flows at the microscopic or single particle level@2#.
On the whole, the investigations have centered on theore
and numerical analysis of the problem. For example, Sav
and Jenkins have pioneered the use of kinetic theory meth
to model microscopic motion in granular flow@3# and Mc-
Namara and Luding have studied dissipative systems u
molecular dynamics and event driven simulations@4#. The
need for experimental validation of these approaches
emphasized by Campbell in his review paper@5#. In response
to this, a number of phenomena have been systematic
investigated, including convection@6#, gravity driven flows
@7#, and wave propagation@8#.

The success of the analogy between atomic and gran
gases is surprising considering the fundamental differen
between such systems. Dissipation of the kinetic energy
heat during collisions leads to a ‘‘granular gas’’ being,
definition, out of equilibrium. Consequently, energy must
continuously introduced into the system, normally acco
plished using boundary motion. The kinetic theory of ga
is built upon the foundations of theequilibrium theories of
thermodynamics and statistical mechanics. Therefore,
not clear that such an approach is entirely appropriate
nonequilibrium steady state such as that seen in a vibr
granular bed. Despite these apparent difficulties an un
standing of granular flow is being developed as hydro
namic theories are constructed from microscopic foundati
@9#.

Until recently, experimental investigations of granul
flow at the ‘‘microscopic’’ or single particle level wer
somewhat impractical. However, the development of h
speed digital photography techniques has led to a serie
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investigations on the microscopic behavior of grains in
two-dimensional~2D! vibrated granular bed, which have in
dicated that ideal granular systems may not be far from e
librium: Warr et al. @10# fitted an Maxwell-Boltzmann distri-
bution function to the measured velocity distributio
functions and extracted the granular temperature from s
curves. The experimental velocity distributions were fou
to be in close correspondence to Maxwell-Boltzmann p
files, indicating that such methods are appropriate to vi
fluidized granular beds@11#. A subsequent investigation
showed that the dynamic structure of a granular material
in many respects similar to that seen in a thermal liquid@12#.
More recently, Chapman-Enskog kinetic theory was tes
for a fluidized granular bed by comparing measurements
predictions of the self-diffusion coefficient@13#. The good
comparison between practice and theory suggested tha
netic theory approaches are valid, at least for relatively e
tic collisions ~restitution coefficient,«.0.9! up to packing
fractions of about 60%@13#.

The availability of whole field techniques for the analys
of rapidly evolving three-dimensional systems, such as
brated granular beds, is limited, e.g., techniques such as
speed photography are unable to probe beyond the surfa
a three-dimensional bed. A number of techniques have
cently been developed to observe the motion of grains
three-dimensional systems. Magnetic resonance imaging
been used for medical applications for some time and
recently been adapted for granular flows. In particular, it w
used to observe convection rolls in tapped and vibra
granular columns@14#. Diffusive wave spectroscopy is a
alternative technique that is also noninvasive@15#. It has
found applications in probing the mean motion in gas flu
ized beds@16# where it was also found that kinetic theorie
were broadly valid even in this multiphase system. Posit
emission tomography~PET! has been used for over 20 yea
to study quasistatic flow fields@17#. From this, positron
emission particle tracking~PEPT! developed allowing the
tracking of a single radioactive tracer particle at high reso
tion in three-dimensional geometries. This powerful tec
nique has recently been used to investigate a number of
©2001 The American Physical Society04-1
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perimental situations, e.g., rotating beds@18# and paste flow
@19#.

This paper will detail the modeling of a vibrofluidize
granular gas using the familiar Smoluchowski equation. O
may treat the motion of a grain buffeted by the random m
tion of neighboring particles by applying Brownian motio
theory or more generally using a stochastic approach
complete analysis of a granular system must involve desc
tion of the evolution of the system in both the spatial a
velocity spaces. However, when one is interested in time
the order of the mean collision time or greater, such stoch
tic approaches can be simplified to just the spatial deve
ment and the Smoluchowski equation may then be emplo
@20#.

The experimental setup used to examine vibrofluidiz
beds will be introduced in Sec. II. In Sec. III, the Smol
chowski equation and its derivation will be considered, a
then in Sec. IV a finite-difference approximation to th
Smoluchowski equation will be presented. In Sec. V the
merical and experimental results will be compared and a
lyzed to determine the extent to which stochastic approac
may be used to describe granular flows.

II. EXPERIMENT

Positron emission particle tracking was used to follow
motion of a single grain throughout a three-dimensional
brofluidized granular bed. This experimental technique
been described in detail in previous publications@21,18,22#.
However, for completeness, we describe the system br
as follows. A particle, containing relatively large quantiti
of oxygen, is irradiated with a highly energetic beam of3He
particles. The interactions between the target nuclei and
incident particles results in the formation of a radioisotope
fluorine, 18F. This radioisotope decays through the emiss
of positrons, which are annihilated when they encoun
electrons. This annihilation results in the conversion of m
ter into two back-to-back 511-keV photons, which are sim
taneously detected in a pair of detectors. This allows
position to be determined by triangulation from success
events.

A three-dimensional granular gas was generated usin
Ling Dynamic Systems~LDS! vibration system. A sinu-
soidal signal was fed through a field power supply~LDS FPS
1! and power amplifier~LDS PA 1000! into a wide fre-
quency band electrodynamic transducer~LDS V651!. This
system has a frequency range of 5–5000 Hz, a maxim
acceleration of 100 g and maximum amplitude of 12.5 m
A cylindrical cell 145-mm diameter and 300-mm height w
placed on the upper surface of the vibrating piston, its
placed between the photon detectors~Fig. 1!. The cell was
constructed of polymethyl methacrylate to limit the attenu
tion of theg rays as they traveled through the experimen
apparatus. The cell was vibrated at a frequency of 50 Hz
at an amplitude,A0 of 1.91 mm. Glass ballotini balls o
diameter 5.060.2 mm~restitution coefficient,«50.91! were
used as the granular medium. A single grain was irradiate
provide the source ofg rays during the experiments.
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III. STOCHASTIC DESCRIPTION OF
A VIBROFLUIDIZED GRANULAR BED

Analysis of the stochastic behavior of grains in a granu
bed, i.e., a probabilistic approach to the transient self-mot
is particularly useful when using experimental techniqu
such as PEPT where only a single grain is tracked throu
out the system. The stochastic phenomenological appro
to Brownian motion was developed by Langevin, Einste
and Smoluchowski@24,23# who were able to formulate a
general theory, initially constructed for equilibrium fluid
Considering the remarkable success of equilibrium gas
netic theories in modeling granular systems, it is importan
judge whether the equilibrium stochastic methods develo
for Brownian motion can be used to model vibrated granu
beds.

A. Continuity and constitutive relations

If we consider a gas of similar particles undergoing rap
motion and successive collisions, and within that gas
‘‘tag’’ a small number of the particles, then if the concentr
tion of the tagged particles is negligible, the motion of t
tagged particles is equivalent to that of single particle m
tion. In this case, the conditional displacement probabi
densityP(r ,t), and the currentj (r ,t) satisfies the continuity
equation@24#

Ṗ~r ,t !1“• j ~r ,t !50 ~1!

and the Fickian constitutive relation

j ~r ,t !52D“P~r ,t !, ~2!

wherer is the position vector of a tagged particle,D is the
self-diffusion coefficient, andt is the time. Solution of Eqs
~1! and~2! in the low frequency limit, i.e.,t@tE , wheretE
is the mean time between collisions, leads to the result

P~r ,t !5
1

~4pDt !3/2expS 2
r 2

4Dt D . ~3!

FIG. 1. Positron emission particle tracking and shaker sys
experimental arrangement.
4-2
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NUMERICAL SOLUTION OF THE SMOLUCHOWSKI . . . PHYSICAL REVIEW E 64 051304
The mean squared displacement can be calculated from
probability density function in the usual way~see e.g., Ref.
@24#! and leads to the well known Einstein relation

D5 lim
t→`

1

6t
^ur ~ t !2r ~0!u2&. ~4!

However, this analysis is only true for unbounded, hom
enous systems, such as an unconstrained thermal gas or
In a granular system, the presence of gravity, as well
causing acceleration between collisions, results in a vary
packing fraction profile in the vertical~y! direction, and soD
is actually a position dependent quantity. In this situation
constitutive relation~2! is modified to

j ~r ,t !52D~r !“P~r ,t !2u~r !P~r ,t ! ~5!

and the combination of Eq.~5! with Eq. ~1! results in the
Smoluchowski equation

Ṗ~r ,t !5“•$D~r !“P~r ,t !1u~r !P~r ,t !%, ~6!

whereu(r ) is the terminal velocity of a particle in a resistin
medium, when an external potential field is applied@25#.

In the case of a vibrofluidized granular bed,u(r )5u(y)
only, as gravitational forces act only in the vertical directio
Similarly D(r )5D(y), since the granular temperature a
packing fraction distributions, on whichD depends, are only
weak functions ofx andz @13,26#.

B. Granular temperature

The granular temperature,EO , is defined in the usua
manner,

EO5 1
3 ~EX1EY1EZ!5 1

3 ~mvX
2̄1mvY

2̄1mvZ
2̄!, ~7!

wherevX , vY , andvZ are the particle velocity componen
resolved in thex, y, or z directions andEX , EY , andEZ are
the granular temperatures for each of the respective di
tions. It is well known that due to dissipation, the granu
temperature in a vibrofluidized bed is anisotropic@10#, and
that, unlike the case of elastic spheres, equipartition of
ergy does not hold. In most casesEY.EX5EZ @10#. This is
an important consideration when probing the spatial de
opment of a system as it causes a corresponding anisot
in the self-diffusion coefficients@13#. For simplicity, how-
ever, we treatD as a scalar throughout this investigation.

The relationships betweenD, EO , and packing fractionh
have been investigated in two dimensions@13#. The Enskog
kinetic theory equation was shown to be obeyed to wit
10% for packing fractions up to about 0.6 and«50.92. In
three dimensions, the corresponding Enskog result read

D5
3

8nd2gO~d! S EO

pmD 1/2

, ~8!

wheren is the number density,m is the particle mass,d is the
particle diameter, andgO(d), the radial distribution function
at contact is given by
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gO~d!5
~22h!

2~12h!3 . ~9!

At least two alternative expressions forD have been derived
in which the Enskog theory is modified to take account
inelasticity @27,28#. However, for the case of reasonab
elastic collisions ~«50.91 in the experiments describe
here!, both modified expressions forD agree with Eq.~8! to
within about 10%. We, therefore, use Eq.~8! throughout the
analysis described here. Similarly, the convective term in
~6! is given by@25#

u~y!5
gd

16h~y!gO~d! S EO~y!

pm D 21/2

. ~10!

IV. SOLUTION OF THE SMOLUCHOWSKI EQUATION

Equation~6! can be solved analytically for the case of a
homogeneous bounded system under the influence of g
tational forces@20#. Unfortunately, this solution is unsuitabl
for a granular bed as the packing fraction and granular te
perature profiles result in a complex diffusion profile, t
form of which is not known analytically as a function o
height. Determination of the packing fraction distributions
reasonably accurate using PEPT@21#, but because the tem
poral resolution of the facility when performing these expe
ments was only 5 ms, granular temperature profiles could
be determined accurately for anything other than very dil
systems@21#. The approach adopted here has, therefore
combine anestimated EO(y) with a measuredh(y), and
then to use the resulting diffusion profileD(y) and convec-
tion u(y) to solve forP(y,t) by means of a finite-difference
scheme. By calculating the time evolution ofu at different
initial heights,EO can be modified in an iterative way, a
described in Sec. IV E in an attempt to match the experim
tally and numerically determined probability densities. Th
approach serves two purposes: first, it allows the relevanc
probabilistic techniques to granular flows to be judged, a
second, it provides an estimate of the granular tempera
profiles for the experiments assessed.

FIG. 2. Displacement probability densities for motion in thex
direction,N51750.
4-3
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Typically the three-dimensional Smoluchowski equati
may be solved through separation of the variables. In thx
andz directions there are no body forces acting, so Eq.~6! is
simplified, with a solution similar to Eq.~3! @see Fig. 2 for
examples of experimentally determined curves ofu(x,t)#.
Therefore it remains to solve the 1D problem for they direc-
tion. The finite-difference formulation, initial and bounda
conditions are described analytically in Sec. IV A–IV C. S
bility issues are discussed briefly in Sec. IV D, and the ite
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tive procedure used to estimateEO(y) is presented in Sec
IV E.

A. Finite-difference approximation

A forward time-centered space approach was taken
solve Eq.~6! @29#. A rectangular mesh is generated and t
following approximation for nodes away from the bounda
regions provides us with a finite-difference approximati
for Eq. ~6!:
P~ i , j 11!5P~ i , j !1H @u~ i 11!P~ i 11,j !2u~ i 21!P~ i 21,j !#

2Dy

1
D~ i 11!@P~ i 12,j !2P~ i , j !#2D~ i 21!@P~ i , j !2P~ i 22,j !#

4Dy2

J Dt1O~Dt2!, ~11!
n
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wherei and j are the node positions, andDy andDt are the
corresponding step sizes between nodes.

B. Initial conditions

At time t50, the probability distribution for a tagge
grain is ad function. Such a function is difficult to represe
computationally, so we allow the grains to spread out in
manner given by Eq.~3! until the distribution function is
sufficiently wide to be represented accurately on the me
This typically corresponds to a time,tC;1027 s. From this
time onward the problem is solved using Eq.~11!.

C. Boundary conditions

In a vibrofluidized granular bed the system is bounded
the walls and the base of the experimental cell. Resolvin
the y direction means that there is only one boundary to
considered at the base. However, the situation is complic
by the fact that the base actually inputs energy into the s
tem, and is more than just a passive reflecting boundary
description of such a boundary requires analysis of the
locity as well as the spatial coordinates, leading to a par
differential equation of the form given by the Fokker-Plan
equation@20#. This is evidently a considerably more comp
cated scenario than that described by Eq.~6!, and we make
the working assumption that the system can be effectiv
modeled by simply using reflecting boundary conditions,
least for points far from the base.

The fact that grains cannot pass through the base,
j Y(y50)50, results in the following Neumann bounda
conditions aty50 @23#:

D~y!
]u~y,t !

]y
1u~y!P~y,t !50. ~12!

This boundary condition was approximated by means of
imaginary nodal point positioned one step beyond the b
The no-flux condition can then be expressed in fini
difference form as
a

h.

y
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e
ed
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A
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n
e.
-

P~1,j 11!5P~3,j 11!1
2u~2!Dy~2,j 11!

D~2!
~13!

where nodal pointi 52 is the boundary node andi 51 is the
imaginary point. The five-point finite-difference equatio
~11! also requiresu to be specified at the boundary valuei
52. This can be expressed using a combination of center
forward-difference approximations, as

P~2,j 11!5P~2,j !1
Dt

2Dy2 $@D~3!2D~2!#@P~3,j !

2P~1,j !#12D~2!@P~3,j !22P~2,j !1P~1,j !#

12Dy@u~3!P~3,j !2u~2!P~2,j !#%. ~14!

At the top surface no explicit boundary condition
implemented. When the upper limit of the mesh is too sm
then significant ‘‘leakage’’ out of the system occurs. Th
leakage was limited by making the height of the mesh
least twice the height of the experimental cell. However,
y→` the packing fraction tends to zero, and henceD di-
verges, causing the numerical solving routine to break do
This was avoided by forcing the packing fraction to dec
asymptotically to a small, but finite value, thus saturatingD
for y.0.1 m.

D. Stability

The analysis of the stability and convergence of the fin
difference approximation to the Smoluchowski equation i
somewhat difficult process due to the varying coefficien
D(y) andu(y). A tentative analysis was carried out for th
case of constantD andu. In this case, the approximation i
consistent and conditionally stable. We, therefore, make
assumption that there exist combinations ofy andt step sizes
that mean that Eq.~11! is both convergent and stable. A
P(y,t) is a probability density function, then it must satis
4-4
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E
0

`

P~y,t !dy51 ~15!

at each time step. For every solution, this normalization
terion was tested. For each solution that met this criterion
was assumed that the conditions necessary for both stab
and convergence had been met. The results presented in
paper were obtained with step sizesDy50.1 mm andDt
51029 secs.

E. Displacement probability density function

The distributions ofD andu in Eq. ~6! are unknown and
must be estimated. Kinetic theory relations~8! and~10! show
that both depend on the packing fraction and granular t
perature distributions. The former is measurable experim
tally and the latter is estimated in a form of inverse analy
A simple functional form was chosen based on knowledge
the granular temperature distributions found experiment
and numerically in two dimensions@30,4#. Such studies sug
gest that the temperature distributions decay in an appr
mately exponential fashion to some nonzero asympt
value

EO5~EO
~1!2EO

~`!!exp~2y/yE!1EO
~`! , ~16!

where EO
(`) is the asymptotic granular temperature,EO

(1) is
the initial value, andyE specifies the length scale for th
decay ofEO . Following the initial estimation ofD andu(y)
@through Eqs.~8!, ~10!, and ~16!# the numerical solution of
Eq. ~6! is compared with the experimentally determined d
placement probability density~DPD!. An iterative process is
then undertaken in which the three parameters control
the granular temperature profile are modified until the D
and the mean squared displacements of the numerical an
experimental DPDs converge. Once this has been achie
realistic estimates of theD(y) andu(y) distributions can be
extracted, and an estimate of the granular temperature pr
is known. Table I shows the values of the parameters of
~14! for N5700, 1750, and 2450. These parameters sh
similar trends to those that have been observed in deta
studies of vibrofluidized granular beds@30#. With increasing
numbers of grains the initial granular temperature is see
decrease, complementing the decrease in the value o
asymptotic granular temperature~Fig. 3!.

V. RESULTS

A. Displacement probability density function

Due to the variation in the packing fraction between e
periments containing different numbers of grains, the ti

TABLE I. Granular temperature parameters@see Eq.~16!# for
N5700, 1750, and 2450.

N EO
(1)(1024 J) EO

(`)(1024 J) yE ~mm!

700 0.25 0.1 0.1
1750 0.2 0.075 0.1
2450 0.11 0.05 0.1
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dependent DPDs for each experiment were expected to d
considerably. In a low density granular gas, the grains spr
out substantially faster than those in a high density gran
gas, due to both the low packing fraction and the relativ
high granular temperature@cf. Eq. ~8!# @13#. Figures 4~a!,
4~b!, 5~a!, 5~b!, 6~a! and 6~b! show the comparison betwee
experimentally determined DPDs and those derived num
cally from Eq.~6!, for N5700, 1750, and 2450, respectivel
for two start heights,y05~a! 32.5 and~b! 52.5 mm, using the
granular temperature profiles defined by the parameter
Table I. The DPDs are compared at intervals of 10 m
100 ms. The measured packing fraction profiles for these
periments are shown in Fig. 7. These are determined by m
suring the residence time distribution of the grain as
function of height, from which the packing fraction profile
calculated using the ergodicity property of the system@21#.
At the lower height of 32.5 mm, the correspondence betw
the numerical and the experimental results is good. FoN
51750 and 2450 this is true over the whole period of exa
nation @Figs. 4~a! and 5~a!#. For N5700, after about 30 ms
the grains begin to collide with the base and discrepan
appear. A no particle flux condition is imposed at the ba
but in reality, as well as a no particle flux, there is a net h
flux boundary condition. The Smoluchowski equation is a
propriate only for describing the development of the d
placement, and any velocity boundary conditions at the b
cannot be handled by the equation. Solutions of the prob
for y0512.5 mm were also attempted. The presence of
grains so close to the base meant that discrepancies ra
became apparent~i.e., at times less than 10 ms! and these
results are not shown.

A phenomenological description of an effective termin
velocity ueff(y) may be estimated through rearrangement
Eq. ~5! in the long time limit,

ueff~y!5
2D~y!

h~y!

dh~y!

dy
~17!

FIG. 3. Granular temperature profiles forN5700, 1750, and
2450, determined through successive iteration of the numerica
lution of the Smoluchowski equation.
4-5
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FIG. 4. Comparison of experimentally an
numerically determined displacement probabili
densities.y05~a! 32.5 and~b! 52.5 mm for N
5700.
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as h is proportional to the steady state displacement pr
ability density,P. In this way, the effect of the vibrating bas
may be incorporated intoueff(y) to provide an effective po-
tential in which the grains move. Figure 8 shows a comp
son ofueff(y) @Eq. ~17!# andu(y) @Eq. ~10!# for N51750. At
locations near to the base,ueff(y) is negative, i.e., grains ar
pushed upward away from the lower-most boundary, a
consequently we observe low values of packing fraction
this region. At higher altitudes,ueff(y) converges towards
u(y) as the influence of the base is reduced. This imp
that, even though the Smoluchowski equation is strictly va
only for the spatial development of grains in a system, it m
be extended through the use of an effective potential to
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scribe more complex situations where, for example, ene
is being injected into the bed.

Generally, one finds that although the correspondence
tween theory and experiment is relatively good at long tim
(t;100 ms), it is difficult to replicate the short term beha
ior. This is most evident at high altitudes, where the pack
fraction is low ~see Fig. 7! and the mean time between co
lisions is long. In this state, the system is not diffusive a
the motion over long periods is essentially ballistic; t
Smoluchowski equation is valid only in a regime where ea
grain has suffered a large number of collisions, and thus
to be expected that the model should break down at s
times and at large distances from the base.
4-6
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FIG. 5. Comparison of experimentally an
numerically determined displacement probabili
densities.y05~a! 32.5 and~b! 52.5 mm for N
51750.
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B. Mean squared displacement

Systems undergoing diffusive behavior are frequen
analyzed in terms of the time variation of the mean squa
displacement. Departure from the linear behavior predic
by Eq. ~4! can provide useful insight into the physical pr
cesses occurring on different time scales.

The mean squared displacement can be calculated dir
as the second moment ofP about the starting point. Figure
shows the result for the caseN51750,yo5~a!32.5 and~b!
52.5 mm. In both plots the agreement between experime
and numerical results is best at long times, with signific
discrepancies occurring over the first 20 ms or so, reflec
the results shown in Figs. 5~a! and 5~b!. The grains are un-
05130
y
d
d

tly

tal
t
g

dergoing ballistic motion over a time scale shorter than
Enskog mean-free time (tE), which gives rise to a quadrati
toe in the experimental plots@13#. The Smoluchowski equa
tion, on the other hand, models the system as being pu
diffusive, even at infinitesimally small times. Poor agreem
between experimental and numerical results at timest,tE is
therefore not surprising.

Figure 9~a! shows little evidence of the convective beha
ior incorporated into Eq.~6!, i.e., the mean squared displac
ment reflects solely diffusive motion. Foryo532.5 mm@Fig.
9~a!# the beads are located close to the maximum pack
fraction, and to the mean height of the granular bed. B
motion of the grains away from this position will be sma
4-7
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FIG. 6. Comparison of experimentally an
numerically determined displacement probabili
densities.y05~a! 32.5 and~b! 52.5 mm for N
52450.
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hence diffusive behavior will dominate the mean squa
displacement@Fig. 9~a!#. At high altitudes@Fig. 9~b!# the
mean squared displacement shows exaggerated diffusio
short times before crossing over to a value close to that s
experimentally fort.20 ms. This type of behavior is onl
observed at lowh, and is due to nonzero diffusion gradien
Expansion of Eq.~6!, considering only they direction, leads
to

]P

]t
5

]D

]y

]P

]y
1D

]2P

]y2 1
]~uYP!

]y
. ~18!

The diffusive mode of the granular behavior is controlled
05130
d

at
en

the first two terms on the right hand side of Eq.~18!.
The first term is only appreciable at short times, wh
the gradient ofP is large. The gradient of the diffusion
coefficient, however, is large only at small packing fra
tions. Therefore, this term is only significant for sma
h ~when y>50 mm!, and at short times, whereuponP be-
comes skewed@Fig. 5~b!#, resulting in an enhanced mea
squared displacement of the type seen in Fig. 9~b!. This
behavior is, of course, not seen experimentally. At sh
times the grains move ballistically, but at timest@tE ,
the gradients of the numerical and experimental me
squared displacements are similar, suggesting the Sm
chowski equation is an effective method of modeling gran
lar flows.
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VI. CONCLUSIONS

The Smoluchowski equation has been employed to mo
the spatial development of grains in a vibrofluidized granu
bed and has been successfully applied at positions away
the base. The granular temperature profiles resulting from
analysis resemble those seen in two-dimensional studie
vibrated systems, both in overall form and in the order
magnitude of their control parameters. Agreement betw
the numerical and experimental results was poorest at
very low and very high altitudes. Failure close to the ba
was attributed to the over-simplistic nature of the bound
conditions employed there. It was found that the behavio
grains close to the base may be described through the u
an effective potential that incorporates the influence of

FIG. 7. Packing fraction profiles,h(y), for N5700, 1750, and
2450;AO51.91 mm.

FIG. 8. Comparison of the terminal velocities,u(y) @Eq. ~10!#
andueff(y) @Eq. ~17!# for N51750. The effective terminal velocity
ueff(y), is negative close to the base, implying that grains are pus
away from the vibrating boundary, indicating that grains may
assumed to be moving in an effective potential incorporating b
the influence of the vibrating base and of gravity.
05130
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he
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e

base as well as gravity on the motion of the grains. Dev
tions at high altitudes were attributed to increases in me
free path beyond the dimensions of the cell. Neverthele
the agreement is perhaps surprisingly good considering
approximations used. It is hoped that the proposed mo
will provide a useful starting point for the development
both an improved understanding of diffusion within dissip
tive nonequilibrium systems and of engineering tools to p
dict mixing behavior in rapid granular flows.
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FIG. 9. Mean squared displacement of the grains as a func
of time, y05~a! 32.5 and~b! 52.5 mm, forN51750.
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