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Numerical solution of the Smoluchowski equation for a vibrofluidized granular bed
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A stochastic approach, similar to that used to describe Brownian motion, was used to model the displace-
ment probability of grains in a three-dimensional vibrofluidized granular bed. As neither an analytical descrip-
tion nor measurements of the diffusion coefficients were available, the governing partial differential equation,
namely, the Smoluchowski equation, was solved numerically using an iterative procedure, modifying the
granular temperature profile at each step. The results of this stochastic model were compared to experimental
measurements of the displacement probability density made using positron emission particle tracking. The
results indicate that methods based on hard elastic systems such as the Smoluchowski equation are appropriate
to granular systems, particularly over timescales greater than the mean collision time.
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I. INTRODUCTION investigations on the microscopic behavior of grains in a
two-dimensional2D) vibrated granular bed, which have in-
Granular materials have been studied closely for over #licated that ideal granular systems may not be far from equi-
hundred year§1]. The ubiquity of such materials in both librium: Warr et al.[10] fitted an Maxwell-Boltzmann distri-
nature and industry has precipitated many studies with trfutlon function to the measured velocity distribution

aim of improving transport and storage methods. RecentlyUnctions and extracted the granular temperature from such
. .~ “¢turves. The experimental velocity distributions were found

%o be in close correspondence to Maxwell-Boltzmann pro-

and nonequilibrium sy;tems ha}s Ied_to renewed interest IIﬂles, indicating that such methods are appropriate to vibro
granular flows at the microscopic or single particle |eia| fluidized granular bed§11]. A subsequent investigation

On the whole, the investigations have centered on theoreticg}yeq that the dynamic structure of a granular material was
and numerical analysis of the problem. For example, Savagg many respects similar to that seen in a thermal liqai.
and Jenkins have pioneered the use of kinetic theory methoqgore recently, Chapman-Enskog kinetic theory was tested
to model microscopic motion in granular flo8] and Mc-  for a fluidized granular bed by comparing measurements and
Namara and Luding have studied dissipative systems usingredictions of the self-diffusion coefficieit3]. The good
molecular dynamics and event driven simulatigd$ The  comparison between practice and theory suggested that ki-
need for experimental validation of these approaches wasetic theory approaches are valid, at least for relatively elas-
emphasized by Campbell in his review pafigl In response tic collisions (restitution coefficientg>0.9) up to packing
to this, a number of phenomena have been systematicallyactions of about 60%13].
investigated, including convectid], gravity driven flows The availability of whole field techniques for the analysis
[7], and wave propagatiof8]. of rapidly evolving three-dimensional systems, such as vi-
The success of the analogy between atomic and granuldrated granular beds, is limited, e.g., techniques such as high
gases is surprising considering the fundamental differencespeed photography are unable to probe beyond the surface of
between such systems. Dissipation of the kinetic energy inta three-dimensional bed. A number of techniques have re-
heat during collisions leads to a “granular gas” being, bycently been developed to observe the motion of grains in
definition, out of equilibrium. Consequently, energy must bethree-dimensional systems. Magnetic resonance imaging has
continuously introduced into the system, normally accom-been used for medical applications for some time and has
plished using boundary motion. The kinetic theory of gasesecently been adapted for granular flows. In particular, it was
is built upon the foundations of thequilibrium theories of used to observe convection rolls in tapped and vibrated
thermodynamics and statistical mechanics. Therefore, it igranular columng14]. Diffusive wave spectroscopy is an
not clear that such an approach is entirely appropriate to alternative technique that is also noninvasjié)]. It has
nonequilibrium steady state such as that seen in a vibratedund applications in probing the mean motion in gas fluid-
granular bed. Despite these apparent difficulties an undeized bedq16] where it was also found that kinetic theories
standing of granular flow is being developed as hydrodywere broadly valid even in this multiphase system. Positron
namic theories are constructed from microscopic foundationemission tomograph¢PET) has been used for over 20 years
[9]. to study quasistatic flow field§17]. From this, positron
Until recently, experimental investigations of granular emission particle trackingPEPT developed allowing the
flow at the “microscopic” or single particle level were tracking of a single radioactive tracer particle at high resolu-
somewhat impractical. However, the development of hightion in three-dimensional geometries. This powerful tech-
speed digital photography techniques has led to a series oique has recently been used to investigate a number of ex-
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perimental situations, e.g., rotating bgds] and paste flow
[19].

This paper will detail the modeling of a vibrofluidized Position-sensitive
granular gas using the familiar Smoluchowski equation, One ¥ detectors
may treat the motion of a grain buffeted by the random mo-
tion of neighboring particles by applying Brownian motion y %
theory or more generally using a stochastic approach. A
complete analysis of a granular system must involve descrip-
tion of the evolution of the system in both the spatial and
velocity spaces. However, when one is interested in times of
the order of the mean collision time or greater, such stochas-
tic approaches can be simplified to just the spatial develop-
ment and the Smoluchowski equation may then be employed

Electrodynamic
shaker system

[20]. @ Tracer particle
The experimental setup used to examine vibrofluidized ~a—~ P Back-to-back 511 keV photons from
beds will be introduced in Sec. Il. In Sec. Ill, the Smolu- positron-electron annihilation

chowski equation and its derivation will be considered, and . o ) i
. L. . . . FIG. 1. Positron emission particle tracking and shaker system
then in Sec. IV a finite-difference approximation to the .
. . . experlmental arrangement.
Smoluchowski equation will be presented. In Sec. V the nu-
merical and eXperimental results will be ComparEd and ana- IIl. STOCHASTIC DESCRIPTION OE
lyzed to determine the extent to which stochastic approaches A VIBROELUIDIZED GRANULAR BED
may be used to describe granular flows.
Analysis of the stochastic behavior of grains in a granular
bed, i.e., a probabilistic approach to the transient self-motion,
Il. EXPERIMENT is particularly useful when using experimental techniques
such as PEPT where only a single grain is tracked through-
Positron emission particle tracking was used to follow theout the system. The stochastic phenomenological approach
motion of a single grain throughout a three-dimensional vi-to Brownian motion was developed by Langevin, Einstein,
brofluidized granular bed. This experimental technique hagnd Smoluchowsk[24,23 who were able to formulate a
been described in detail in previous publicatip@$,18,23.  general theory, initially constructed for equilibrium fluids.
However, for completeness, we describe the system brieflgonsidering the remarkable success of equilibrium gas ki-
as follows. A particle, containing relatively large quantities netic theories in modeling granular systems, it is important to
of oxygen, is irradiated with a highly energetic bean™de  judge whether the equilibrium stochastic methods developed
particles. The interactions between the target nuclei and thfr Brownian motion can be used to model vibrated granular
incident particles results in the formation of a radioisotope ofpeds.
fluorine, *®F. This radioisotope decays through the emission
of positrons, which are annihilated when they encounter A. Continuity and constitutive relations
electrons. This annihilation results in the conversion of mat- ) . i ) ,
ter into two back-to-back 511-keV photons, which are simul- T We consider a gas of similar particles undergoing rapid

taneously detected in a pair of detectors. This allows thanotion and successive collisions, and within that gas we

position to be determined by triangulation from successive 129" @ small number of the particles, then if the concentra-

events. tion of the tagged particles is negligible, the motion of the

A three-dimensional granular gas was generated using @99€d particles is equivalent to that of single particle mo-
Ling Dynamic SystemsgLDS) vibration system. A sinu- tion. .In this case, the condlt!onal dlspla}cement prqba_blllty
soidal signal was fed through a field power suplpS FPS densn_yP(r,t), and the curreni(r,t) satisfies the continuity
1) and power amplifiefLDS PA 1000 into a wide fre- €duation[24]
quency band electrodynamic transdu¢eDS V651). This
system has a frequency range of 5—-5000 Hz, a maximum
acceleration of 100 g and maximum amplitude of 12.5 mm
A cylindrical cell 145-mm diameter and 300-mm height was
placed on the upper surface of the vibrating piston, itself j(r,t)y=—DVP(r,t), 2)
placed between the photon detect@fsg. 1). The cell was
constructed of polymethyl methacrylate to limit the attenua-wherer is the position vector of a tagged particl2,is the
tion of the y rays as they traveled through the experimentalself-diffusion coefficient, and is the time. Solution of Egs.
apparatus. The cell was vibrated at a frequency of 50 Hz an€ll) and (2) in the low frequency limit, i.e.t> 7, whererg
at an amplitudeA, of 1.91 mm. Glass ballotini balls of is the mean time between collisions, leads to the result
diameter 5.6 0.2 mm(restitution coefficiente =0.91) were )
used as the granular medium. A single grain was irradiated to P(r.t)= 1 exd — o~
provide the source of rays during the experiments. 7 (47Dt)3R 4Dt)"

P(r,t)+V-j(r,t)=0 )

and the Fickian constitutive relation

()
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The mean squared displacement can be calculated from this (2—7)
probability density function in the usual wagee e.g., Ref. go(d)= m 9

[24]) and leads to the well known Einstein relation

At least two alternative expressions forhave been derived
in which the Enskog theory is modified to take account of
inelasticity [27,28. However, for the case of reasonably
elastic collisions(¢=0.91 in the experiments described
However, this analysis is only true for unbounded, homoghere, both modified expressions f&r agree with Eq(8) to

enous systems, such as an unconstrained thermal gas or fluffthin about 10%. We, therefore, use E8) throughout the
In a granular system, the presence of gravity, as well a nalysis described here. Similarly, the convective term in Eq.

causing acceleration between collisions, results in a varying® 1 given by[25]

— i 1 2
D—I|ma<|r(t)—r(0)| ). (4)

t—o

packing fraction profile in the vertic&y) direction, and s® gd Eo(y)| 2

is actually a position dependent quantity. In this situation the u(y)= 167(y)30(d) m (10

constitutive relatior(2) is modified to 7Y)9o m
ji(r,t)=—D(r)VP(r,t)—u(r)P(r,t) (5) IV. SOLUTION OF THE SMOLUCHOWSKI EQUATION

Equation(6) can be solved analytically for the case of an
homogeneous bounded system under the influence of gravi-
tational forceg 20]. Unfortunately, this solution is unsuitable
for a granular bed as the packing fraction and granular tem-
perature profiles result in a complex diffusion profile, the

whereu(r) is the terminal velocity of a particle in a resisting form of which is not known analytically as a function of
medium, when an external potential field is appljes]. height. Determination of_ the packing fraction distributions is
In the case of a vibrofluidized granular bedy)=u(y)  easonably accurate using PEFZL], but because the tem-
only, as gravitational forces act only in the vertical direction,Pral resolution of the facility when performing these experi-
Similarly D(r)=D(y), since the granular temperature and ments was only 5 ms, granular temperature profiles could not

packing fraction distributions, on whidb depends, are only be determined accurately for anything other than very dilute
weak functions ok andz [13,26]. systemg21]. The approach adopted here has, therefore, to

combine anestimated B(y) with a measuredy(y), and
then to use the resulting diffusion profil®(y) and convec-
tion u(y) to solve forP(y,t) by means of a finite-difference
The granular temperaturdsy, is defined in the usual scheme. By calculating the time evolution wfat different
manner, initial heights, Eq can be modified in an iterative way, as
described in Sec. IV E in an attempt to match the experimen-
Eo=1(Ex+Ey+Ez)=3(mvi+mvi+mv3), (7) tally and numerically determined probability densities. This
approach serves two purposes: first, it allows the relevance of
wherevy, vy, andv, are the particle velocity components probabilistic techniques to granular flows to be judged, and
resolved in thex, y, or z directions ancty, Ey, andE; are  second, it provides an estimate of the granular temperature
the granular temperatures for each of the respective dire@rofiles for the experiments assessed.
tions. It is well known that due to dissipation, the granular 0.8¢
temperature in a vibrofluidized bed is anisotrofl®], and ) == 5ms |
that, unlike the case of elastic spheres, equipartition of en-
ergy does not hold. In most casés>Ey=E; [10]. This is
an important consideration when probing the spatial devel- g¢g}
opment of a system as it causes a corresponding anisotrop
in the self-diffusion coefficient§13]. For simplicity, how- - 0.5}
ever, we treaD as a scalar throughout this investigation. E/
The relationships betwedd, Eg, and packing fractiorny x0.4r
have been investigated in two dimensiga8]. The Enskog %
kinetic theory equation was shown to be obeyed to within &
10% for packing fractions up to about 0.6 aneF0.92. In
three dimensions, the corresponding Enskog result reads

3 EO 1/2 01 B
D= 8ndPao(d) ( ) @

and the combination of Eq5) with Eq. (1) results in the
Smoluchowski equation

P(r,t)=V-{D(r)VP(r,t)+u(r)P(r,t)}, (6)

B. Granular temperature

0.7

0.3f

0.2

Tm 1]
-50

wheren is the number densityn is the particle masgl is the

particle diameter, ando(d), the radial distribution function FIG. 2. Displacement probability densities for motion in the
at contact is given by direction,N=1750.

051304-3



WILDMAN, HUNTLEY, HANSEN, AND PARKER PHYSICAL REVIEW E 64 051304

Typically the three-dimensional Smoluchowski equationtive procedure used to estimaig,(y) is presented in Sec.
may be solved through separation of the variables. Inxthe 1V E.
andz directions there are no body forces acting, so @®yis
simplified, with a solution similar to Eq3) [see Fig. 2 for A. Finite-difference approximation
examples of experimentally determined curvesugx,t)]. A forward time-centered space approach was taken to
Therefore it remains to solve the 1D problem for thdirec-  solve Eq.(6) [29]. A rectangular mesh is generated and the
tion. The finite-difference formulation, initial and boundary following approximation for nodes away from the boundary
conditions are described analytically in Sec. IV A—IV C. Sta-regions provides us with a finite-difference approximation
bility issues are discussed briefly in Sec. IV D, and the iterafor Eq. (6):

[ui+1)P(i+1,j)—u(i—1)P(i—1,)]

2Ay
P(i,j+1)=P(i,j)+ . S . . . o At+0(At?), (11
BIFD=PODTY b+ 1)[P(i+2)~P(i,i)]-D(i— DIP(,j) —P(i—2)] (a), (D
+ 2
4Ay
|
wherei andj are the node positions, addy andAt are the _ _ 2u(2)Ay(2,j+1)
corresponding step sizes between nodes. P(1j+1)=P(3,j+1)+ D(2) (13

B. Initial conditions . . . .
where nodal poini=2 is the boundary node ane-1 is the

At time t=0, the probability distribution for a tagged imaginary point. The five-point finite-difference equation
grain is aé function. Such a function is difficult to represent (11) also requiress to be specified at the boundary valie

computationally, so we allow the grains to spread out in a=2 This can be expressed using a combination of center and
manner given by Eq(3) until the distribution function is forward-difference approximations’ as

sufficiently wide to be represented accurately on the mesh.
This typically corresponds to a timeg~10"’s. From this

time onward the problem is solved using Egl). P(2j+1)=P(2))+ 22_;2{[D(3)_ D(2)][P(3,)
C. Boundary conditions —P(1,))]+2D(2)[P(3,j)—2P(2,))+P(1,j)]

In a vibrofluidized granular bed the system is bounded by
the walls and the base of the experimental cell. Resolving in
they direction means that there is only one boundary to be
considered at the base. However, the situation is complicated At the top surface no explicit boundary condition is
by the fact that the base actually inputs energy into the sysmplemented. When the upper limit of the mesh is too small,
tem, and is more than just a passive reflecting boundary. Ahen significant “leakage” out of the system occurs. This
description of such a boundary requires analysis of the veleakage was limited by making the height of the mesh at
locity as well as the spatial coordinates, leading to a partialeast twice the height of the experimental cell. However, as
differential equation of the form given by the Fokker-Plancky— the packing fraction tends to zero, and herizei-
equation[20]. This is evidently a considerably more compli- verges, causing the numerical solving routine to break down.
cated scenario than that described by &), and we make This was avoided by forcing the packing fraction to decay
the working assumption that the system can be effectivelpsymptotically to a small, but finite value, thus saturaiing
modeled by simply using reflecting boundary conditions, afor y>0.1m.
least for points far from the base.

The fact that grains cannot pass through the base, i.e.,

+2Ay[u(3)P(3,)) —u(2)P(2)1}. (14)

jv(y=0)=0, results in the following Neumann boundary D Stability
conditions aty=0 [23]: The analysis of the stability and convergence of the finite-
difference approximation to the Smoluchowski equation is a
au(y,t) somewhat difficult process due to the varying coefficients,

D(y) +u(y)P(y,t)=0. (12

D(y) andu(y). A tentative analysis was carried out for the
case of constard andu. In this case, the approximation is
This boundary condition was approximated by means of amonsistent and conditionally stable. We, therefore, make the
imaginary nodal point positioned one step beyond the basessumption that there exist combinationyaindt step sizes
The no-flux condition can then be expressed in finite-that mean that Eq(1l) is both convergent and stable. As
difference form as P(y,t) is a probability density function, then it must satisfy
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TABLE I. Granular temperature parametg¢see Eq.(16)] for x107°
N=700, 1750, and 2450. 2.5k " " " —-: N=700
e ety N=1750
N EP(10747) ES)(1074) ye (mm) T~ — N=2450
700 0.25 0.1 0.1 S I S
1750 0.2 0.075 S ok P
2450 0.11 0.05 0.1 o
3 e
o [ T
L

J?P(y,t)dy=1 (15 1\

at each time step. For every solution, this normalization cri- ¢ 5}
terion was tested. For each solution that met this criterion, it
was assumed that the conditions necessary for both stabilit
and convergence had been met. The results presented inth ¢
paper were obtained with step sizAy=0.1 mm andAt

=10 °secs.

20 40 60 80 100
y (mm)
FIG. 3. Granular temperature profiles fbk=700, 1750, and
E. Displacement probability density function 2450, determined through successive iteration of the numerical so-
The distributions oD andu in Eqg. (6) are unknown and lution of the Smoluchowski equation.

must be estimated. Kinetic the(_)ry relatl_c(ﬁss and(10) show dependent DPDs for each experiment were expected to differ
that both depend on the packing fraction and granular tem- iderablv. In a low densi | h ; d
erature distributions. The former is measurable experimenc-ons’I erably. In a low density granular gas, the grains sprea
P ) out substantially faster than those in a high density granular

flgi/n? nlti ;Eﬁéggﬁ;;?o?ﬁl:/nvgtseghlgszrzok;;nsg(fj ngegg\,aggly: Iz' as, due to both the low packing fraction and the relatively
P g igh granular temperaturef. Eq. (8)] [13]. Figures 4a),

the granular temperature distributions found experimentall;z(b) 5(a), 5(b), 6(a) and Bb) show the comparison between

and numerically in two dlmepspr[sp,él]. Sich sfcud|es Sug- experimentally determined DPDs and those derived numeri-
gest that the temperature distributions decay in an approxi-

! . -cally from Eq.(6), for N=700, 1750, and 2450, respectively,
me|1tely exponential fashion to some nonzero asymptotlgor,wvO start heightsyo = (a) 32.5 and(b) 52.5 mm, using the
value : ' ’

granular temperature profiles defined by the parameters in
Eo=(EX—ES))exp —ylyg) +ES, (1)  Table I. The DPDs are compared at intervals of 10 ms—

100 ms. The measured packing fraction profiles for these ex-
where Eg) is the asymptotic granular ’[emperatuEfol) is periments are shown in Fig. 7. These are determined by mea-
the initial value, andyg specifies the length scale for the suring the residence time distribution of the grain as a
decay ofEq . Following the initial estimation ob andu(y) function of height, from which the packing fraction profile is
[through Eqgs(8), (10), and (16)] the numerical solution of ~calculated using the ergodicity property of the sysfed].
Eq. (6) is compared with the experimentally determined dis-At the lower height of 32.5 mm, the correspondence between
placement probability densitfDPD). An iterative process is the numerical and the experimental results is good. Wor
then undertaken in which the three parameters controlling= 1750 and 2450 this is true over the whole period of exami-
the granular temperature profile are modified until the DPDnation[Figs. 4a) and 8a)]. For N=700, after about 30 ms,
and the mean squared displacements of the numerical and tHe grains begin to collide with the base and discrepancies
experimental DPDs converge. Once this has been achievedppear. A no particle flux condition is imposed at the base,
realistic estimates of thB(y) andu(y) distributions can be but in reality, as well as a no particle flux, there is a net heat
extracted, and an estimate of the granular temperature profifd!x boundary condition. The Smoluchowski equation is ap-
is known. Table | shows the values of the parameters of EqPropriate only for describing the development of the dis-
(14) for N=700, 1750, and 2450. These parameters showlacement, and any velocity boundary conditions at the base
similar trends to those that have been observed in detailegannot be handled by the equation. Solutions of the problem
studies of vibrofluidized granular bef30]. With increasing for yo=12.5mm were also attempted. The presence of the
numbers of grains the initial granular temperature is seen tgrains so close to the base meant that discrepancies rapidly
decrease, complementing the decrease in the value of thecame apparerit.e., at times less than 10 mand these

asymptotic granular temperatufeig. 3. results are not shown.
A phenomenological description of an effective terminal
V. RESULTS velocity ugi(y) may be estimated through rearrangement of

) . . _ Eq. (5) in the long time limit,
A. Displacement probability density function

Due to the variation in the packing fraction between ex- —D(y) dn(y) 17

periments containing different numbers of grains, the time Uer(Y) = n(y) dy

051304-5



WILDMAN, HUNTLEY, HANSEN, AND PARKER PHYSICAL REVIEW E 64 051304

0.1 0.06 0.08 0.06 06
1 ms B ms 30 ms 40 ms 50 ms
0.05 0.05 0.05 0.05
0.08f 3
—- 0.0a} fF 0.04 s 0.04 0.04
T_006 $ 2
g 1 0.03 0.03 0.03 0.03
o 004
0.02 0.02 0.02 0.02 | &%
0.02

0.01 0.01

0.01}

0 fi} o B o ’ o0&
0 40 80120160 0 40 80 120160 O 40 80 120160 0 40 80 60 0 40 80 120160
s Experiment

- Numerical Solution

0.06 .06 0.06 0.06 0.06
60 ms 70 ms 80 ms 90 ms 100 ms
0.05 0.05 0.05 0.05 0.05
0.04 0.04 0.04 0.04
i
0.03 0.03 003l & 0.03

0.02 0.02 0.02

0.02

0.011& 3 0.01 0.01

0 o o % 08 0&
0 40 80120160 O 40 80 120160 0O 40 80 120160 O 40 80 120160 O 40 80 120160
y (mm) y (mm) y (mm) y (mm) y (mm) ) )
@ FIG. 4. Comparison of experimentally and
numerically determined displacement probability
0.1 05—z 0.05 0.05 05 densities.y,=(a) 32.5 and(b) 52.5 mm forN
10_%ns j 30 ms 40 ms 50 ms =700.
0.08 ﬂ7 0.04 0.04 0.04 @ 0.04
'TAO.OG ﬁ 0.03 0.03
£
E
a 0.04 0.02 0.02
.02t fo) 0.01 0.01
0 0
0 40 80 120160 120160
~a= Experiment
== Numerical Solution
0.05 .05 .05 .05 .05
60 ms 70 ms 80 ms 90 ms 100 ms
0.04 0.04 0.04 0.04 0.04
'TAO.03 0.03 @
= s
E
a 0.02 0.02
0.01 10.01
i ¥ S
,.;.;:- ANEES 0 & Qe 4 Qi . o0& x-
0 40 801 60 0 40 80120160 0 40 80 60 O 40 80120160 0 40 80 120160
y (mm) y (mm) y (mm) y (mm) y (mmy)
(b)

as n is proportional to the steady state displacement probscribe more complex situations where, for example, energy
ability density,P. In this way, the effect of the vibrating base is being injected into the bed.

may be incorporated inta.«(y) to provide an effective po- Generally, one finds that although the correspondence be-
tential in which the grains move. Figure 8 shows a comparitween theory and experiment is relatively good at long times
son ofuek(y) [Eq. (17)] andu(y) [Eg. (10)] for N=1750. At  (t~100ms), it is difficult to replicate the short term behav-
locations near to the basesq(y) is negative, i.e., grains are ior. This is most evident at high altitudes, where the packing
pushed upward away from the lower-most boundary, andraction is low(see Fig. 7 and the mean time between col-
consequently we observe low values of packing fraction inisions is long. In this state, the system is not diffusive and
this region. At higher altitudesi.(y) converges towards the motion over long periods is essentially ballistic; the
u(y) as the influence of the base is reduced. This impliesSmoluchowski equation is valid only in a regime where each
that, even though the Smoluchowski equation is strictly validgrain has suffered a large number of collisions, and thus it is
only for the spatial development of grains in a system, it mayto be expected that the model should break down at short
be extended through the use of an effective potential to detimes and at large distances from the base.
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0.16 16 0.08 08 0.08
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0.04

0.02
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(b)

B. Mean squared displacement dergoing ballistic motion over a time scale shorter than the

Systems undergoing diffusive behavior are frequentlyENskog mean-free timerg), which gives rise to a quadratic
analyzed in terms of the time variation of the mean square{P® in the experimental plofd.3]. The Smoluchowski equa-
displacement. Departure from the linear behavior predicted©n: ON the other_ hgr?d, models the system as being purely
by Eq. (4) can provide useful insight into the physical pro- diffusive, even at infinitesimally small times. Poor agreement
cesses occurring on different time scales. between experimental and numerical results at titres: is

The mean squared displacement can be calculated directiperefore not surprising.
as the second moment Bfabout the starting point. Figure 9 Figure 9a) shows little evidence of the convective behav-
shows the result for the casé=1750,y,=(2)32.5 and(b)  ior incorporated into Eq(6), i.e., the mean squared displace-
52.5 mm. In both plots the agreement between experimentahent reflects solely diffusive motion. Fgg=32.5 mm[Fig.
and numerical results is best at long times, with significan®(a)] the beads are located close to the maximum packing
discrepancies occurring over the first 20 ms or so, reflectingraction, and to the mean height of the granular bed. Bulk
the results shown in Figs(& and 3b). The grains are un- motion of the grains away from this position will be small;
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hence diffusive behavior will dominate the mean squaredhe first two terms on the right hand side of E@.S8).

displacemen{Fig. 9a)]. At high altitudes[Fig. 9b)] the

The first term is only appreciable at short times, when

mean squared displacement shows exaggerated diffusion #xe gradient ofP is large. The gradient of the diffusion

short times before crossing over to a value close to that seetpefficient, however, is large only at small packing frac-
experimentally fort>20ms. This type of behavior is only tions. Therefore, this term is only significant for small
observed at lowy, and is due to nonzero diffusion gradients. » (wheny=50mm), and at short times, whereupdéh be-

Expansion of Eq(6), considering only the direction, leads
to

9°P
ay?

&P_ dD oP

d(uyP)
—=——
at - ay ay

Iy

(18)

The diffusive mode of the granular behavior is controlled

comes skewedFig. 5b)], resulting in an enhanced mean
squared displacement of the type seen in Fig).9This
behavior is, of course, not seen experimentally. At short
times the grains move ballistically, but at timeés ¢,

the gradients of the numerical and experimental mean
squared displacements are similar, suggesting the Smolu-
chowski equation is an effective method of modeling granu-

bylar flows.
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FIG. 7. Packing fraction profilesy(y), for N=700, 1750, and (@)
2450;Ap=1.91 mm.

VI. CONCLUSIONS

The Smoluchowski equation has been employed to mode _

the spatial development of grains in a vibrofluidized granular g~ |

bed and has been successfully applied at positions away fror £

the base. The granular temperature profiles resulting from the E 2F

analysis resemble those seen in two-dimensional studies Cg

vibrated systems, both in overall form and in the order of .%1_5_

magnitude of their control parameters. Agreement betweer%
the numerical and experimental results was poorest at botl g

very low and very high altitudes. Failure close to the base & [

was attributed to the over-simplistic nature of the boundary & g

conditions employed there. It was found that the behavior of 20 st

grains close to the base may be described through the use ¢
an effective potential that incorporates the influence of the

x10”

«§%« Experiment |
weew Numerical |

40 60 80

100
a0 i . . . . . ] time (ms)
— u v (b)
30k . u(y) 4
FIG. 9. Mean squared displacement of the grains as a function
20 of time, y,=(a) 32.5 and(b) 52.5 mm, forN= 1750.
101
2 : base as well as gravity on the motion of the grains. Devia-
g o ~ tions at high altitudes were attributed to increases in mean-
=_10 free path beyond the dimensions of the cell. Nevertheless,
El the agreement is perhaps surprisingly good considering the
-20p ] approximations used. It is hoped that the proposed model
_aol ] will provide a useful starting point for the development of
both an improved understanding of diffusion within dissipa-
—40} tive nonequilibrium systems and of engineering tools to pre-
dict mixing behavior in rapid granular flows.
5% 10 20 30 40 50 60 70 80

FIG. 8. Comparison of the terminal velocitias(y) [Eq. (10)]
andugk(y) [Eq. (17)] for N=1750. The effective terminal velocity,

y (mm)
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